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Abstract

While deep learning methods have demonstrated classi-

fication performance comparable to human readers in tasks

such as computer-aided diagnosis, these models are diffi-

cult to interpret, do not incorporate prior domain knowl-

edge, and are often considered as a “black box.” We present

a novel interpretable deep hierarchical semantic convolu-

tional neural network (HSCNN) to predict whether a given

pulmonary nodule observed on a computed tomography

(CT) scan is malignant. Our network provides two levels of

output: 1) low-level semantic features; and 2) a high-level

prediction of nodule malignancy. The low-level outputs re-

flect diagnostic features often reported by radiologists and

serve to explain how the model interprets the images in an

expert-interpretable manner. The information from these

low-level outputs, along with the representations learned

by the convolutional layers, are then combined and used to

infer the high-level output. Our experimental results using

the Lung Image Database Consortium (LIDC) show that the

proposed method not only produces interpretable lung can-

cer predictions but also achieves comparable results with

the state-of-the-art methods.

1. Introduction and Background

Lung cancer is the leading cause of cancer mortality

worldwide. Computed tomography (CT) imaging is the de

facto modality to early detect and characterize pulmonary

nodules. However, some studies indicate that the false pos-

itive rate for low-dose CT is upwards of 20%, resulting in

unnecessary medical, economic, and psychological costs.

Moreover, detection rates vary among less experienced radi-

ologists, particularly in subtle cases, as interpretation heav-

ily relies on past experience. Figure 1 illustrates examples

of malignant (top row, R1) and benign (bottom row, R2)

nodules. The visual appearance of these nodules is highly

varied with subtle differences in size, shape, and texture,

underscoring the challenge faced by radiologists in differ-

entiating between the two categories.

In response, computer-aided diagnosis (CADx) systems

Figure 1. Illustrations of malignant and benign nodules: R1 are

malignant nodules; R2 are benign nodules.

[1] are being developed to help distinguish between malig-

nant from benign nodules. Deep learning methods [2, 3,

4, 5], particularly convolutional neural networks (CNNs),

have been used for lung nodule classification, with promis-

ing results. Markedly, these works use deep learning as

a “black box” and do not attempt to explain what repre-

sentations have been learned or why the model generates

a given prediction. This low degree of interpretability ar-

guably hinders target end users, such as radiologists, from

understanding how the models work and ultimately impedes

model adoption for clinical usage. In contrast, a number

of radiologist-interpreted features derived from CT scans

have been considered influential when assessing the malig-

nancy of a lung nodule [6]. These features are referred to

as semantic features in this study. Examples of such seman-

tic features include nodule consistency (texture) and shape.

These features are intuitive to radiologists and are moder-

ately robust against perturbations in image resolution and

reconstruction kernel.

In this study, we demonstrate a novel interpretable hier-

archical semantic convolutional neural network (HSCNN)

that predicts whether a nodule is malignant in CT images.

The HSCNN generates two levels of outputs. The first pre-

dictive level provides intermediate outputs in terms of diag-

nostic semantic features, while the second level represents

the final lung nodule malignancy prediction score. Jump

connections are employed to feed the information learned

from the first level semantic features to the final malignancy

prediction. As such, our first level outputs provide explana-

tions about what the HSCNN model has learned from the

1 63



raw image data and correlates semantic features with the

specific malignancy prediction; it also provides additional

information to improve the final malignancy prediction task.

2. Materials and Methods

2.1. Dataset

We trained and evaluated the model using the publicly

available Lung Image Database Consortium dataset (LIDC-

IDRI) [7]. LIDC-IDRI contains 1,018 CT scans with nod-

ule diameters ranging from 3-30 mm; each CT scan was

annotated by four human readers. Nodules ≥ 3mm were

contoured at the pixel-level in 3D by each radiologist then

assigned labels related to likelihood of malignancy and se-

mantic characteristics.

We considered five semantic characteristics: calcifica-

tion, subtlety, sphericity, margin, and texture. Each feature

was rated from 1 to 5 or 6 by each reader. Calcification

indicates the presence and patter of calcification in the nod-

ule. The categorical value from 1 to 6 means popcorn, lami-

nated, solid, non-central, central and absent pattern, respec-

tively. Subtlety defines the level of difficulty of detecting

the nodule relative to surrounding. Value from 1 to 5 repre-

sents the degree from extremely subtle to obvious. Spheric-

ity presents the nodule three dimensional shape in terms of

roundness. Value 1, 3 and 5 indicate linear, ovoid and round

shape, respectively. Margin feature shows how well defined

the margins are. Value 1 means poorly defined margin and

value 5 represents shape margin. Finally, texture describes

the nodule internal texture consistency. Value 1, 3 and 5 rep-

resents non-solid, part solid and solid nodule, respectively.

Only nodules identified by at least three radiologists

were included in this study. CT scans with slice thick-

ness larger than or equal to 3 mm were also excluded, re-

sulting in 897 LIDC scans with 4,252 nodule annotations.

The LIDC annotation process employed one ordinal feature

(likelihood of malignancy) and four semantic features (mar-

gin, sphericity, nodule subtlety, and texture (consistency)).

Scores for these five nodule characteristics were binarized

by averaging the scores for each nodule as in [4] and then

binarizing each feature: average scores between 1-3 were

assigned Label 0 while 4-5 were assigned Label 1.

2.2. Hierarchical Semantic Convolutional Neural
Network

The proposed HSCNN utilizes a 3D patch centered on

the lung nodule as input and outputs two levels of predic-

tions, as shown in Figure 2. This architecture comprises

three parts: 1) a feature learning module; 2) a low-level

task module; and 3) a high-level task module. The feature

learning module adaptively learns the image features that

are generalizable across different tasks. The low-level task

predicts five semantic diagnostic features: margin, texture,

Figure 2. Model architecture of the hierarchical semantic convolu-

tional neural network.

sphericity, subtlety, and calcification. The high-level task

incorporates information from both the generalizable image

features and the low-level tasks to produce an overall pre-

diction of lung nodule malignancy.

The feature learning module (Figure 2, feature learn-

ing) consists of two convolution module blocks where each

block shares the same structure and contains two stacked

3D convolution layers followed by batch normalization and

one 3D average pooling layer. Each convolution layer has a

kernel size of 3× 3× 3. Rectified linear units (ReLUs) are

used as the nonlinear activation functions. 16 feature maps

are used for both convolution layers in the first convolution

module, and 32 feature maps are adopted for both convo-

lution layers in the second convolution module. A 3D max

pooling layer is used in the end to progressively reduce the

spatial size of the feature maps by a half in all three dimen-

sions.

After the last convolutional module, output features are

fed simultaneously into the low- and high-level task mod-

ules. The low-level task module (Figure 2, low-level

task) consists of five branches, each with the same archi-

tecture, representing a distinct semantic feature (i.e., tex-

ture, margin, sphericity, subtlety, or calcification). Fully-

connected layers (densely-connected) are used for each of

these branches. One fully-connected layer connects each in-

put unit to each output unit, designed to capture correlations

from all input feature units to the output. Batch normaliza-

tion is applied. The dropout method are employed between

fully-connected layers. Two fully-connected layers are em-

ployed before the final binary prediction with 256 neurons

and 64 neurons for the first and second layer, respectively.

The high-level task module (Figure 2, high-level task)

predicts whether the nodule is malignant. This module com-

bines the output features from the feature learning mod-

ule and each of the low-level task branches as its input.

As shown in Figure 2, the output feature maps from the

last convolution module are used, along with the output

from the last second fully-connected layer of each subtask
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branch. This design makes the final prediction utilize the

basic features learned from the shared convolution modules

and forces the convolution blocks to extract representations

that are generalizable across all tasks. It also makes use

of the information learned from each related semantic sub-

task to ultimately infer nodule malignancy. The last fully-

connected layer in each subtask branch is trained to extract

representations more specific to the corresponding subtask

compared to the second to last fully-connected layer. Thus,

the second to last layer of the subtask branch is chosen to

provide less specific but salient information for the final ma-

lignancy prediction task. The concatenated features are in-

putted into a fully-connected layer with 256 neurons.

To jointly optimize the HSCNN during network training,

a global loss function is proposed to maximize the probabil-

ity of predicting the correct label for each task by:

Lglobal =
1

N

N∑

i=1

(
5∑

j=1

λj · Lj,i + LM,i) (1)

where N is the total number of training samples and i in-

dicates the ith training sample. j is the jth subtask and

j ∈ [1, 5]. λj is the weighting hyperparameter for the jth

subtask. Lj,i represents the loss for sample i and task j.

LM,i is the loss for the malignancy prediction task for the

ith sample. Each loss component is defined as weighted

cross entropy loss by:

Lj,i = − log (efyi,j/
∑

n

efyn,j ) · ωyi,j (2)

where yi is true label for the ith sample (xi, yi). Here,

yi equals 0 or 1. fyi,j is the prediction score of the true

class yi for task j and fyn,j represents a prediction score

for class yn. We use ωyi,j to represent the weight of class

yi for task j. The use of ωyi,j is important because the

labels are imbalanced in all the tasks and ωyi,j is helpful

in reducing the training bias introduced by such data im-

balance. Specifically, ωyi,j weights each class loss propor-

tional to the reciprocal of the class counts in the training

data. For instance, ωyi=0,j = Nyi=1,j/(Nyi=0,j+Nyi=1,j)
and ωyi=1,j = Nyi=0,j/(Nyi=0,j +Nyi=1,j). Nyi=1,j rep-

resents the total count of samples in the training data for

task j, where the true class label equals 1.

3. Experimental Results

We performed model training, validation, and testing us-

ing the 897 LIDC scans. A 4-fold cross validation study

design was employed to obtain the final assessment of the

model performance. Within each fold, we split these cases

into four subsets, where each subset had a similar number of

nodules. 2 subsets are used for training, 1 subset for valida-

tion, and 1 subset for holdout testing. To better control for

model overfitting, 3D data augmentation was applied during

the training process.

3.1. Malignancy Prediction Results

To evaluate and compare the HSCNN performance on

lung nodule malignancy prediction, a 3D convolutional

neural network (3D CNN) was implemented as a base-

line model. This 3D CNN uses the same feature learning

and high-level task modules as the HSCNN but do not in-

clude the low-level subtask module. The baseline model

was trained and evaluated using the same data and settings.

The HSCNN model achieved a mean AUC 0.856, mean

accuracy 0.842, mean sensitivity 0.705 and mean speci-

ficity 0.889; while the 3D CNN model achieved a mean

AUC 0.847, mean accuracy 0.834, mean sensitivity 0.668

and mean specificity 0.889. The metric assessments show

that the proposed HSCNN achieved better performance for

malignancy prediction compared with the conventional 3D

CNN approach.

We also compared our results with other deep learning

models for lung nodule malignancy prediction that utilized

the LIDC dataset reported in literature to date. Kumar et al.

[3] developed a deep autoencoder-based model with 4,323

nodules from LIDC, achieving model accuracy of 0.7501.

Hua et al. [2] presented a CNN model and deep belief net-

work (DBN) model using 2,545 LIDC nodule samples. The

CNN model had specificity of 0.787 and sensitivity 0.737;

and the DBN model obtained specificity of 0.822 and sen-

sitivity 0.734. In [4], Shen et al. used a model based on

multi-scale 3D CNN. Developed with 1,375 LIDC nodule

samples, the average accuracy is reported 0.84. All of these

previously reported methods were evaluated with only train-

ing and validation data splits without an independent hold-

out test dataset. Generally, our model achieved better or

similar performances compared with these reported meth-

ods. However, direct comparison of these models is difficult

given that each model was trained and tested on different

subsets of the LIDC dataset.

3.2. Semantic Feature Prediction Results and Model
Interpretability

For the classification performance for each of the low-

level tasks, we achieved mean accuracy of 0.908, 0.725,

0.719, 0.834 and 0.552; mean AUC score of 0.930, 0.776,

0.803, 0.850 and 0.568; mean sensitivity of 0.930, 0.758,

0.673, 0.855 and 0.552; and mean specificity of 0.763,

0.632, 0.796, 0.636 and 0.554 for calcification, margin, sub-

tlety, texture, and sphericity, respectively. These results sug-

gest that the HSCNN model is able to learn feature rep-

resentations that are predictive of semantic features while

simultaneously achieving high performance in predicting

nodule malignancy.

Figure 3 demonstrates the interpretability of the HSCNN
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Figure 3. Illustrating the HSCNN model interpretability: lung nod-

ule central slices, semantic feature prediction and malignancy pre-

diction. R1, R2, R3 and R4 are four different nodules. (a) Central

slices of axial, coronal and sagittal view of two benign nodule sam-

ples; true and predicted labels for interpretable semantic features

and malignancy. (b) Two malignant nodule samples.

model by visualizing the central slices of the 3D nodule

patches in axial, coronal, and sagittal projections while pre-

senting the predicted interpretable semantic labels along

with the malignancy classification results. Figure 3a-R1

shows that the HSCNN model classifies the lung nodule as

benign (the true label is also benign). This decision cor-

related to predictions of this nodule as having no calcifica-

tion, sharp margins, roundness, obvious contrast between

nodule and surroundings, and solid consistency. The pre-

dictions of these five semantic characteristics are the same

as the true label and corresponds to our knowledge about

benign lung nodules. Compared to a 3D CNN malignancy

prediction model, the HSCNN provides more insight for in-

terpreting its predictions. Similarly, in Figure 3b-R3, the

proposed model predicts the lung nodule as malignant (true

label is also malignant). Different from the benign case, the

HSCNN model predicts this nodule having poorly defined

margins, ground glass consistency, and non-round shape.

This partly explains why the HSCNN makes a malignancy

classification with such nodule characteristics correspond-

ing to our expert knowledge about typical malignant nod-

ules. We note that the sphericity predictions made by the

model are different from the true label. This result is ex-

plained by the fact that while the nodule has a more reg-

ular round shape in axial view, the shape is actually more

elongated in the two other projections, as shown in Figure

3b-R3.

4. Conclusion

In summary, we developed a novel radiologist-

interpretable HSCNN model for predicting whether an (in-

determinate) nodule is malignant. This model simultane-

ously predicts nodule malignancy and five semantic charac-

teristics, including calcification, margin, subtlety, texture,

and sphericity of nodules. These diagnostic semantic fea-

tures predictions are intermediate outputs associated with

the final malignancy prediction and are useful to explain

the model’s prediction of nodule malignancy. Our network

architecture provides a way to create a mapping between

semantic features with which radiologists are familiar and

deep features that are learned by the model from the data.

Results from the low-level tasks can be used to automati-

cally pre-populate a radiologist report or provide context to

the radiologist on the model’s overall prediction of malig-

nancy.
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